


ety blem of Thre die

James H, Bartlett

Department of Physics, University of Illinois
Urh‘n.. Illin°i°' U.S.4. )

The restricted pioblem of three bodies, which consists in the
determination of tio motion bf a body of infinitesimal mass under the
gravitational action of two other bodies of finite mass, has been
investigated by many theoreticians and computers., Poincaré (1) and
Birkhoff (2) obtained valuable general results; Darwin (3), Strdmgren
and his school (4), Shearing (5), and Goudas (6) have made extensive
coaputations, have shown in detail how some of the periodioc solutions
look, and have made limited studies of their stability.

' 4 comprehensive picture of the simpler periodic solutions is
perhaps best attained by means of the concept of a clgss of periodioc
orbits, which concept was introduced and employed effectively by
Str3mgren for the case of equal finite masses. If one periodic orbit
is ¥nown, then one may vary either the first integral (Jacobi constemt)
or the mass ratio, or both, and then adjust the initial conditions
continuously to give another periodic orbity the family of ordbits se
obtained is said to constitute a class. A good understanding should
then be reached if one can describe and explain the internal structure
of the simpler classes, and to show how and why various classes are
interrelated. It is in this sense that the present program has been
undertaken, rather than for the purpose of calculating orbits with
extireme exactness,

In the present article, which is restricted to the case of equal
finite masses, there are presented curves and tables which show how
most of the main classes of Strdmgren develop continuously. (StrBmgren
was, in most cases, only able to give a few typical members of the
class, because his wcrk was done before the advent of the modern
eleotronic computer). Class (g), which was started by Burrau and ’
Str¥mgren (7}, and carried through about one-half of its development
by the late P. Pedersen, is given completely. Seven new classess



(A), (/-), V), (a), (B)y (F), and (5), the latter three of which are
Just as important as class (g), are reported for the first time. *)

We also indicate how to determine several classes ~f asymmetric orbits,
and we show how one may use a suitable mapping to find all the periodic
solutions. Inspection reveals that continuation to the case of unegual
masses is straightforward, and work is proceeding along these lines.
Definite statements about ultimate atability are, however, very dif-
ficult to make, because they require a very precise knowledge of the
mapping near a fixed point (elliptic). Moser (8) has shown that

stability can occur for certain special mappings, but it remains to
be seen whether our mappings fall into this category.

Equations of Motion.

Suppose we have two bodies S and J with masses m, and m, re-

2
spectively, which execute circular motions about their common center

of gravity, and that the distance SJ between them has magnitude 2
units, Let us study the motion of a third body P which has vanishingly
small mass and moves in the same plane as S and J do..

Let there be a coordinate system (x,y) fixed in the plane, with
origin O at the center of gravity. Set SO = Ty 0J = Ty SP = r,

PJ wp. P, S, and J have as coordinates (x,y), (xl,yl) and (xz,yz).
The equations of motion for P are

X - m (xl-x)/l"3 + ) (’2"‘)/?3 (1)
2

¥ =% (5,90 + 6% m, (7,-v)/p°

Now let us refer the motion to a rotating coordinate system

(f ,07), where thef -axis lies along SJ. The angular velocity is
; 1/2 1/2
w = (/2)[(m, + ,)/2]2 < x (u/8)Y/

The equations of motion in this system are
'

s - 2w0')-u)2g + kzml()'r + rl)/r3 + k2m2 (5 - r2)/y5 =0

2
P+ 20} - + K /e 4 k2m2'7/?5 -0 @

%) Presumably our (B) class is the same figure-of-eight class (c'; c")
predicted by Darwin, for the case m = 10 m,, in pert V of his
second paper (3).
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If we set (v = 1, then KM = 8, and equatioms (2) may be written

as

[ 24'; -BU/a; , »7 +2f = 30/om (3)
where

20 -2+ + 8(1L47)/r + 8(1 -7)/p (4)
with

T- (m1 - mz)/(m1 + mz), and (u;z/l) - -;- (1-y).
Equations (3) have the first integral

'2“?2-20-1( (5)

§

where K is the Jacobi constant (Stromgren's notation).

Equations (2) are singular at r = 0 and f = 0, so that one
cannot treat collision orbits on a par with other orbits. To overcome
this difficulty, Thiele (9) introduced a transformation which allows
one to vary parameters of a family (class) of orbits smoothly, paying

no special heed to collision orbits. This transformation is

g = cosh Fcos E+ [
M = - sinh F sin E (6)
dy = (W/re) at

We have the further equations

r = cosh F + cos E, 9 = cosh F - cos E
and rp- (1/2) (cosh 2F - cos 2E).

When F = O, then ; = cos E + J, 7 = 0, which corresponds to the
f-a.xie between the 2 masses. When E = O, f = cosh F - 1 + Tos <M =0,
which represents the § -axis between B, and ,+°°' Similarly, when
E=1n, s =1l - cosh F - ryy M= 0, describing the g ~axis between
m, and -o0. The line E = /2 has coordinates ; =7, M= - sinh F, and
is the locus of points equidistant from the 2 masses.

In what follows, a dot will denote differentiation re ¥ rather
than re t.

The equation for the first integral, namely (5), now transforms

into
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B+ i‘z-(l/a)(oonh 4F - cos 4E)-(7/2)(cosh 2F - cos 2E) + 16 cosh F
+ (¥/2)(cos E cosh 3F - cos 3E cosh F - 32 cos E)= 2 H (7

where T = K -"2. ,
The differential esquations (3) themselves become
E = (coeh 2F - cos 2E)F + JH/AE
F =« -(cosh 2F - cos zn)i +dE/dF (8)

In the case of equal masses, )Y =0, T ® K, and

E = (cosh 2F - cos ZI); + (1/4) sin 4B - (7/2) sin 2E 9)
F = —(ocosh 2F - cos 2E)E+(1/4) sinh 4F - (T/2) sinh 2F + 8 sinh F

When ¥ § O, the right hand sides of (9) have additional terms
-( ¥/4)(sin E cosh 3P - 3 sin 3E cosh F - 32 ein E)

(10)
-(¥/4)(-3 coe E sinh 3F + cos 3E sinh F)

Rs Bos

The present article will deal with equal masses ( J= 0), and so
equations (7) and (9) will be applicable. Let ue first make some
general remarks about the invariance properties of equation (9).

This equation is still the same if E is replaced by E + x, which
amounts, if Y= 0, to replacing } by -S and 7 by - 7 . In other
words, for equal masses the physical system remains invariant under a
rotation of 180°. '

The reversed motion is obtsined either by replacing ¥ with - ¥
or by ohnng:lng F to -F. The latter is equivalent to the transformation
§ § ﬂ] - -0), or reflection about the g-uia, and also, fron the
preceding, to reflection about the /P-axis, i e. } - -f /’7 7.

The equations (9) are thus invariant under E'ax-EF F/ = -F.

Periodic Solutions.

The periodic solutions occupy an important place in the theory
of the equations, because some of them are quite stable and the system
stays togeather for.a Tong time. Therefore our first task will be to
locate where the periodic solutions are, in gemeral. We need
oniy determine the simpler periodic solutions, because Birkhoff has
proved the existence of solutions which have periocds that are multiples
of the basic period. A revision of this proof of Birkhoff's Fixed Point
Theorem has been given by Siegel (10).
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If the motion of a dynamical system is to be periodic, this means
that after a period T the dynamical variadbles return to their original
values. Alternatively stated, one must in general solve a system of

.non-linear ordinary differential equations, subjeot to the boundary con-
ditionu that the final positions and velocities must have the same
values as the initial ones.

Let us firet consider motion in one dimension subject to a foroce
which is not explicitly dependent on the time. The equation of motion
2 + f(u) = O has a first integral % 3% an- V(u), where h is constant
and V is the potential energy. If V has a minimum, then librations will
occur in the valley of V, and the period may be determined by a
quadrature. Given h and u, one can determine the velecity u except for
sign. The periodic motions may be easily visualised by drawing the
trajectories in the phase plane (u,u).

It is somewhat more difficult but still feasidle to characterize
periodic motion in 2 dimensions, such as is the case for the restricted
3-body problem. Let the Jacobi constant K have a definite value, and
consider the totality of periodic motions belonging to thias value.

They will be closed curves in the (E,F) plane, which we shall call
gigencurves. These curves can be symmetric with respect to (1) the

-axis (2) the % -axis (3) both the ;-uia and the 7) -axis or
(4) neither the f—uia nor the /) -axis.

[ﬁhe symmetry properties of the equations do not by any means
exclude asymmetric solutions, but such solutions have hitherto been
largely ignored because they are somewhat more complicated and also
less easy to locate. However, Strdmgren (4) (see Tableau V, fig. 8)
gives one example and Rabe (11) some otherq] When T is varied con-
tinuously, the eigencurves also change continuously, and generate
eigensurfaces in (E,P,T7) space. The totality of these surfaces is thus
a representation of periodic motion for our problem. More generally,
one can let Y, the mass-ratio parameter, vary and see how the eigen-
surfaces change., Each distinct surface is said to represent a class

of periodic solutions.,

Location of Periodic Solutions.

For a given K, assume that the eigencurve is cut by some line such
as E = const. Then we may take this value as our initial and final
value of E, and consider the transformatiom S which carries the initial.

value of E over into its final value. This transformation will
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simultanecusly take the initial values of F and E into new ones,

i.e. s(Fi,ﬁi) - (Ff,éf). This may be regarded as mapping the (F,E)
plane into itself. Now, for any a; the equation s (a,ﬁi) -(a,ﬁj) gives
the intersection of the map of F « a with the line F = a itself, and
if a be allewed to vary, we obtain the locus of "a" intersections.
Likewise, from 8(F,,b) = (Fj,b); we odtain the locus of "b" inter-
seotions, and the intersections of the two loci will be the fixed
points l(a,/g) - (atfg). These fixed points characterize the periodic -
solutions which intersect the given line E = const.

Such a method of obtaining periodic solutions for a given K is
systematic and thorough, and it guarantees that important periodic
solutions will not be overlooked. In practice, it can involve excessive
labor of computation, so that it is often better to use other methods
based upon the physical nature of the problem. These will now be
discussed.

The simplest type of periodic solution is that where the particle
is at rest in the rotating system, which may occur at the libration
points. These are five in number, namely L1 : E=1* x/2, F = 03
L2 t E=0, F=1%1,5206; L3 t E=x, F =% 1,5206; L4 3
E=73n/2 F=121,316958; and Ly ¢ E = *x/2, F = * 1,316958. Also,
one might expect relatively simple periodic solutions near one of the
masses, since the influence of the other mass would be
small there,

According to Strtmgren, each class has a natural beginning and a
natural end, and these can coincide. Furthermore, the beginning and end
will, if not infinite, be related to the positions of the masses or
of the libration points‘?his will be made more explicit belowy) This
principle enables one to discover at least one periodic orbit be-
longing to a class. It is then a simple matter to vary an appropriate
initial condition, either E or F, and to determine how K must vary
to preserve periodicity. Thus the whole class may be traced onut.

Stromgren confined his attention mainly to orbits which were
symmetrical either with respect to the E-axis, or tc the F-axis, or
perhaps both. This makes the location of a periodic orbit rather easy
for a given K, because one knows that the initial inclination is
perpendicular to one of these axes. Then it is only necessary to vary
the distance along the axis until the final boundary conditions are ful-
filled, provided of course that a periodic orbit of the desired type
does exist for the value of K in question.
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ruzr many classes, a natural terminaticn is ar asympiotic orbit
3niraiing st Trom I.-4 (cr Lg); This san be symmetric with respect
: 4
Lo the2 g -ax:8 and spiral into LS’ nr gymmetryic with respect to *he
c

ﬁ?waxis and spiral into L or cbmpleteiy agymmetric and spiral into L

4’

fsamples of such orbits are given by Stromgren {4) (see Fig. 15

4.

an’ Tableau V, ioc. cit). If one knows these limiting orbits, then a
*echnique is needed for finding the other members of the class.
"n1e feasible method is to rake use of the coiling property ~f the
siger=surface, which will now be explained,

“*zge k is a rather simple one and is well-suited for the demon-
< at.on of the coiling. If oune considers the profile of the eigen-
surface corresponding to the plane E = O, this is a curve which begins

with g spiral about a point F

Fi’ K = 11 and ends with a spiral

abcut another point F = Fj’ K 11. The points Fi and Fj are the
F-intercepts of Strémgren's asymptotic orbits I and II. Since this
~ciling does occur for all classes (for ¥ = 0) which terminate in
asymptotic orbits, we are assured that there will be an orbit of the
class at a finite distance from Fi (or Fj) and with K = 11. This simple
observation enables us to find such an orbit readily, provided one
knows what the limiting orbit of the class is. And it does not matter
greatly if the orbit is an asymmetric one.

Some limiting orbits for asymmetric classes can be found in a
simple and systematic manner. These are the orbits which begin and end
at L4. An orbit which ends at L4 will be the mirror image in the»ﬂ?-axis
cf one which begins at L4. Now all the asymptotic orbits calculated by
Stromgren cross the ﬂ7—axis at points with ordinates 17%, not far from
L4, and at an angle of 57°42.25' with the /7—axis. If we plot the
slope d”?/dg at a subsequent crossing versus /)?C, the value of lyat
the crossing, the resulting curve C may be regarded as consisting of
two parts, C' if a%/ak > 0 and ¢ if aP/a§ £ 0. Now replace all
ordinates of C° by their negatives, thereby obtaining the mirror image
TE-T, and intersect this image with C+. The intersections will give us

curves which begin and end at L and these need not be symmetric

4’
either to the f-axis or to thel‘?-—axis. If not, we have a limiting

orbit for an asymmetric class.



e

In order to demonstrate how the principal simple symmetric
classes develop, we show two profiles of the eigensurfaces, together
with enlarged dfawings where necessary. Figure la is a plot of K vs, Ei
for F1 = 0 and Fi ¥» 0, Figure lb_an enlargement.of part of Figure la.
Figure 2a is a plot of X vs, Fi for Ei = 0 and Ei > 0, and Figures 2b
and 2¢ are corresponding enlargements. (The restrictions ii >0
and ﬁi‘> 0 are introduced for purposes of clarity in representation).

If two profiles intersect, the point of intersection corresponds
to an orbit which is common to the two classes. For instance, in
Figure la, the initial wvalues Ei are then the same, Fi = O, K has the
same value, and Fi is positive in both cases. The orbit is uniquely
determined by these initial conditions and the differential equationms,
and so must be a common one. However, if éi had been negative in one
case and positive in the other, the conclusion would not be correct,
and this is the reason for our convention that %i shall be positive for
the profile,

If two profiles are close to each other, the orbits of the two
classes will be close initially, and usually close over an appreciable
interval of time. Eventually they will diverge because, belonging to
different classes, they will satisfy different final boundary
conditions, in general. However, since both orbits are periodic, this
divergence is later compensated for by a corresponding convergence, so
that no immediate conclusion about stability can be drawn.

In Figure la, an intersection of a profile with the K-axis marks
the point Ei = 0, Fi

with éi = 0, For Figure 2a, similar intersections give '"periodic"

= 0, 8o that we have a "periodic" ejection orbit

ejection orbits with ii = 0. (The word "periodic" is used here in a
loose sense., These orbits are not actually periodic physically, but
the nearby orbits of the class are, and there is a perfectly esmooth
transition through the ejection orbit). If a class does have an ejection
orbit, it becomes very easy to locate the class. Accordingly, we show
in Figures 3a and 3b ejection orbits for Ei<= 0, in Figures 4a and 4b
ejection orbits for Fi = 0, and in Figures 5a, S5b, and 5S¢ ejection
orbits for K = 10 as a function of angle of ejection.

According to Strdmgren, a class is either closed or has a natural
beginning and a natural end. In practice, this means that the eigen-

surface is either closed, becomes infinite at one of the masses,



9.

stretches to infinity, or is bounded by a limiting curve (asymptotic
orbit). Combinations of these latter possibilities occur, as the
general rule.

A class is a continuous family of periodic orbits with certsin
symmetry properties (including complete asymmetry). In some cases,
one may integrate over one half period or even one quarter period,
specifying certain initial and final boundary conditions. These con-
ditions remain the same throughout the class, while other properties,
such as whether the motion is retrograde or direct, or simply - or
multiply - periodic, may not. Stromgren did not confine himself to
classes with simply - periodic orbits throughout, and he did omit
classes which are as simple as the ones he included.

Three fairly simple "open" classes are (c), (f), and (m). Class (c)
is gefined by F, = 0, ﬁi = 0, E. = %/2, and F,. = 0. It starts with the
libration point Ll’ K = 16, Ei = 1:/2= The orbite in the neighborhood
are simply ~ periodic and retrograde, and all are symmetric with re-~
?pect to E = n/2 and F -.O; Class (f) is defined by F, = 0, E; <0,

Ei = 0, Fi > 0, Ef = 0, Ff = 0, It starts at mass m,, X =00, Ei = 0,

f
i

The nearby orbits are simply - periodic and retrograde, and all are
symmetric with respect to E = O and F = Os For both classes, K falls
rapidly at the start and goes through a series of damped oscillations

as E;, decreases (or as F_ increases). The (c) profile stays below the

(f) profile, running mor£ or less parallel to it; the two profiles
cannot intersect because of the different symmetries. The theory of
this behavior at large distances has been given by J. P. Meller (12).

The class (m) has been included in the tables for completeness,
but not in the figures (because the maximum value of K is only about
K = «2,471.This class of retrograde periodic orbits around the two
finite masses also has retrograde motion in the fixed coordinate frame
(due to the high velocities at all points of the orbits). The class
begins with circles of infinite radius but zero period (in the limit,
of course, as K goes to -op and Fi goes to +oo). As the class develops
by closing in on the masses, the orbits become ellipses of increasing
eccentricity. In the 1imit (as K again goes to -go, but F, now goes to
gero) the orbits become rectilinear orbits between the two masses,
with zero period (i.e. an ellipse of eccentricity onme).

Class (n) is defined to be symmetric with respect to just the
E-axis, and retrograde. Its profile for Fi = 0 is periodic in E, with
period &, as are the differential equations themselves for p = 1/2
(1’- 0). This class is therefore closed in the (5 »m) system, the one
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with immediate physical meaning. Between the minimum value of K and the
value at Ei = 0 the orbits are doubly - periodic about one of the masses
in the (}?,'7) system, but from the collision value of K to its maximum
they are simply - periodic librations between the masses. At the minimum
value of K there is a common orbit with class (f), since there is then
symmetry also with respect to the F-axis. At the maximum value of K there
is an orbit in common with class (c), and in this case symmetry with
respect to the 7 -axis (E = n/2).

Class (a) is defined to be symmetric about the F-axis only, and retro-
grade. Its simplest member is the stationary libration point L2. The claas
is a closed one, so has no beginning or endy, but it is convenient to start
with L2 and follow the developmenti Here the value of K is a maximum,
corresponding to the fact that the velocity is zero. But this value falls
rapidly as F, is increased. The orbits at first are simply - periodic
librations agout L2, and remain so until the ejection orbit is reached.
The value of K goes through a minimum somewhat before this. After the
ejection orbit, the motion is doubly - periodic about the mass m, in the
(S ,/p) system. The value of K increases from that at ejection to a maximum
and then drops to another minimum, after which the orbits are retraced in
reverse sequence to L2. At this minimum for K, there is an orbit in common
with class (f£), so that for this point only there is symmetry about both
the E-axis and the F-axis. (The above development can be followed by
referring to Figure 2a, and observing that the full line is a semi-profile
of the eigensurface. Each orbit has two intercepts on the F-axis, of the
same sign for librations and of opposite sign for motion around the mass).
From Figure 2a, it is evident that there is a maximum value of K just
after ejection and that the maximum value of Fi occurs soon ther this,
i.e. is not coincident with ejection. It should be noted that the data of
Strdmgren were extremely scanty for class (a), so that it was impossible
to construct an accurate profile, such as is here presented.

As 8 third and final example of a closed class, let us consider
class (5), the profile of which is shown in Figures 2a and 2c. This class,
which was unknown to Stromgren,is about as simple as class (a). It is a
class which is generally symmetric wnly about the F-axis, and is partly
reirograde and partly direct. At its maximum K it has an orbit in common
with class (g), as also at its minimum K. The first is direct and the

second retrograde, and both are symmetric with respect to both the E- and



11.

Fegxes. At the maximum K, the motion is doubly - periodic, and direct about
the mass. It remains so until the ejection orbit is reached, when it
changes to a direct, simply-periodic libration. This behavior persists
until an intermediate minimum for K, where the orbit has but one intercept
on the P-axis, The libration then changes to a retrograde one until the
second ejection orbit, when the motion becomes doubly - periodic and retro-
grade around the mass. After K reaches the second minimum, where the orbit
is in common with the (g) class, the development of the class proceeds in
reverse sequence back to the maximum value for K. The general behavior of
class (&) is in some respects similar to that of class (a), even though
the latter has only retrograde motions.

The remaining classes in this paper are all ones which terminate on
asymptotic-periodic orbits from L4 and L5. We have completed class (g),
made class (k) more precise and complete, and have discovered and traced
out 6 other new classes, which we designate by (a), (,8), ( )’), (}.), (/u),
and (V). Class (a) was the first to be discovered, and is shown on
Figures 2a and 2b and also tabulated. It is complicated and of minor
importance, so that it will only be defined, as consisting of orbits which
start out with E = O, F = 0, B > 0 and after exactly one-half period
satisfy these same conditions {but F has assumed a value different from the
initial one). The other classes in this group are only a small fraction of
the possible ones associated with L4 and LS’ as is easily seen from the
systematic method of generation. Stromgren listed 5 simple periodic-
asymptotic orbits and mentioned that one could combine these half-orbits
together. As a matter of fact, any such combination can be regarded as the
limiting orbit of a class, and we may trace out the class by the method
described previously. The classes presented in this paper are simple ones
which have been easy to locate, and it is hoped that their study will
furnish a good picture of the general behavior,

Figure 1b shows the profile of class (g) in the neighborhood of our
2 new classes (%3) and (3’), together with the profiles of the latter two
clagses. Class (‘3) consists of trajectories which are symmetric with
respect to both the E- and F-axes. One gquarter of each trajectory is a
curve which starts up normal from the E-axis and ends normal to the Fe~axis
and with ﬁ >» 0., Let us denote by VII that periodic-asymptotic orbit which
proceeds from L4, crosgses the F-axis once and then strikes the F-axis
normally at about F = 1,75. Then one-half of one limiting orbit for the
(p)-clasa is composed of half-orbits III and VII, while the other

half-orbit consists of IV and VII. The motion is for most of the class
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direct around the mass, but there is a small portion where l < O and the
motion is retrograde. Class ( J) is symmetric in genersl only aboat the
E-axis, as is class (n), but it is, for the most part, direot. For each
permissidble value for K, there is at least one pair of intercepts on the
B-axis. WVhen K is 2 maximum, one intercept is the negative of the other.
The two limiting orbits are each composed of 2 half-orbits (combined in
opposite ways at the two spiral ends), ome of which is Strdmgren's III,
while the other (XII) comes fro-fyi = 1.71905]1 and intercepts the E-axis
normally at -0.037282,

The interrelations of the above classes are interesting. Class {/3)
has as a quarter-trajectory a curve ending with >0, while class (g) has
for its similear curve one ending with g < .0, so that the profiles cannot
possidbly intersect. Class (J ) has a trajectory symmetric about the F-sxis
at its maximum K, so that class (g) can and does intersect class (J) there,
™e (g)-profile runs very closé to the ﬁ)~pro£ile over a considerable
range, indicating that only a small change in slope near the end of the
quarter-trajectory will cause a change from class (g) to class (/53).

Class (ﬂ) oan perhaps be regarded as s sort of combination of class (g)
with class (a), and as corresponding to Darwin's figure-of-eight class
(¢'y¢") for M= 10/11 (¥ = -9/11). In Pigure 2b, we see that its F-profile
is between those for (a) and (g).

Figure 2b shows partial profiles of classes (a), (g), (V), (ﬁ), and
(a). All these classes except (a) have limiting orbits consisting in part
of semi-orbit VII, If the profiles were drawn to completion,. they would
all spiral around the limiting F-intercept of VII at K = 11. This happens
for one end of {a), one end of (g), and both ends of (ﬁ) and (V).

Class (W) starts out norma)l to the F-axis with £ > O and atrikes the

7 -axis (B = -n/2) normally. Since these boundary conditions are not
compatible with those for (g) and (,6), the profiles for these two classes
will not be intersected by that for class (V). Class (V) has a maximunm
at about K = 13,72 near L2, and a minimum at X = ©¢,08, At one spiral end it
has aslimiting half-orbit the Limiting Oxrbit VII. The other end has a double-
spiral combination of Limiting Orbit VII plus half of Limiting Orbit 2

(see Str3mgren, loc.cit., Tableau V, Pigure 2) as its half-orbit, As the
limiting orbits of (a), (g), (VY), and (/j) are approached, the profiles
come very close together, which reflects the fact that the limiting orbits
all have aemi-orbit VII in common.

Pigure 2c shows in detail the relation between classes (g), (&), (a),
(x), ana (//). Por F, > 0, classes (g), (8), (a), and (k) run close together,
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because there is a large loop in the trajectory and only a small variation
in Fi is necessary to change the orientation of this loop, and hence to
change from the satisfaction of one final boundary condition (say F = 0 at
E = 1n/2) to another (say E = O at F = 0). Class (k), which is symmetric
about the F- and.ﬁ?-axes, runs between the 2 limiting half-orbits I and II,
with large variation in K. Class (/u), which is just symmetric about the
F-axis, runs between a liniting orbit I + V at one end and II + V at the
other, with only small variation in K. This may be due to the fact that
orbit V corresponds to a large Fi’ and that only a small change in the
velocity there can lead to a large change of slope at the other end of the
trajectory (at small Fi)' The orbits of Q/l) loop around both L, end L5’
but remain outside the mass m, for most of the class (i.e. except for that
part which approaches Limiting Orbit II, with F}')»O). They differ from the
orbits of the (k) class because of the outer portion associated with
Limiting Orbit V.

Figure 2a shows class (1) and how it spirals around the F, of V.
Another new class, () ), spirals about a point with F; slightly less than
that for V, and corresponding to an asymptotic orbit (XIII) starting from
LS’ looping near L4, and then hitting the F-axis normally. The K for this
class falls off with increasing Fi' One orbit of this class was erroneocusly
assigned by Stroémgren to class (1).

To give a general idea of how the trajectories vary with Fi and Ei’ we
have chosen a convenient value of K = 12.5 and plotted the corresponding
trajectories, Figure 6a covers the range from Fi = =1.25 to Fi = -0.95,
Figure 6b shows Fi = -0.7 to Fi = 1.75, and Figures 6c and 6d show how the
trajectories depend on E; (from E; = -1.8 to E;, = 0, and E; = 0 to E; = 1.6).
By referring to these diagranms, it is easy to see when the various boundary
conditions, for periodic orbits, will be satisfied.

Figure 7 shows the different periodic orbits themselves for K = 12,5,
It is particularly interesting to note how, when the profiles are close,
the orbits themselves are close over a good portion of their paths. For
example, the (5) class is a sort of combinetion class, which is possible
because the final E for the lower-right (g) class orbit (with Fi"s 0.15
and EfQSII.BS) is not too different from initial E for the upper-right
(8) clase orbit (with E; 1.2 end F,"= 0.8). All that is needed is a small
change of slope from the vertical to effect the t-msition to the (&) class
orbit. If we look at Figure la, the two "branches" of the (g) class run

parallel and not too far apart in this region, for 2 wide variation in K.
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Figures 8as, 8b, and 8c show, for the first time, the deiailed and
complete development of class (g). Strd3mgren wrote "It is certain that
in one way or another this class is "associated" with the points L4 and
LS". But this statement lacked effective content, since the manner of
association was completely unknown. P. Pedersen, in unpublished calcul-~
ations made just before his death in 1958, followed class (g) to
K = 7.6. We obtained more points on the profiles to this stage, ond
traced the class to its limiting ordit. The interpretation of itis
behavior is rather impossible unless one knows of the existence of
classes (§), (-{ )y ([3), and ( ))), which were discovered by u:.

Class (g) begins with direct motion around mass m,. The amplitude
in both E and F directions increases until a cusp develops, follow2d by
a loop. Now the F-profile becomes close to that of the (&) clacc, with
which there are 2 intersections, one at maximum K and the otker ot
minimum K. The E-profile is at the same time close to that for cluss (c),
as is easily possible when the loop is tight, and small changes in
slope are all that are necessary to meet a desired boundary con iion,
Since there can be an intersection of the E-profiles of classes (g) cnd
()r), this will have to occur at the maximum K for class (3/), and <o
the (g) profile swings up to do this. Actually, the (g) profile ccn
follow that of the () class for a longer stretch of development t:on
for class ( 10, and does so, as is seen in Figure 1b, However, the
lower intercept of (B )-trajectories with the F-axis (where tl: slone
is not horizontal) must remain positive. At the same time, the valun of
Ff for class (g) can vary smoothly and change sign. This is what hanpens,
and at the F-ejection orbit (about K = 10.2) the two E~profiles part
ocompany, that for the (g) class suffering a sharp reversal of direciion.
The value of Ei now becomes negative, the motion retrograde, aud *la2
E~ and PF-amplitudes increase steadily. The loop has disappeared ond
the motion is now triply - periodic, although the class does have 2
common orbit with the eimply - periodic retrograde class (f), at about
the minimum K for class (g). Prom here on, the general development is
that of slow changes in E and F, and rapid ones in K. The middle pars
of the quarter trajectory,which is at first in the fourth quadrant
(E> 0, FC 0), moves to the left and up, across a skew-angle ejection
orbit (E = 0, F = 0), and then develops first a cusp and then & loopn.
The final (limiting) half-orbit is a double spirsl around L, consisting
of asymptotic orbits VII and VIII. The first neighboring class to be
reached is () ), with trajectories normal to E = -x/2. Tuen the
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trajectories become close to those of class (;3) and remain so
half-way around L4, because this part of the limiting orbit (VII) is
common, Since class (V) has a maximum K = 13,72, and since‘class (g)
cannot intersect it, the profile of class (g) must go around that of
olass ( V), which it does, to become asymptotic to the class (5)
profile. This accounts completely for the F-profile of class (g), and
the remainder of the E-profile does not seem to of fer anything of
interest.

Figure 9 shows the developmont of the closed (&) class, which is
rather complicated, from maximum K to minimum K, The development from
minimum X to maximum K is obtained by taking the mirror images {about
the E-axis)} of the orbits shown in the figure. '

Finally, Figure 10 shows the periodic-asymptotic orbits of Strin-
gren, as well as nine cthers which we have found. These latter are
necessary for an understanding of how various classes, in
particular (g), terminate.

In order that the work be truly quantitative, it is imperative
to give initial conditions for the periodic solutions which we have
obtained. With these and an electronic computer, one can reproduce
any orbit desired. In our calculations, the main work has consisted in
varying the initisl conditions so that the final ones would be satisfied,
and the actval solutions (orbite) have been printed out oanly for cases
which seemed particularly interesting, such as the (g) class. Our
initial and final conditions, as well as the elapsed "time" x = Ay,
are given in the tables. Also, the last table gives the initial ana
final -cnéitions for all the asymptotic-periocic half-orbits shown in

Figure 10,
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Class fal

Initial Conditions: E, = O; I'vi = 0 éi > 0.
03 Ff - 05 E.< 0.

Final Conditions: Ef

Note: To obtain the remainder of the class take the mirror images,

i.,e, the values

' . '
Fi = -Fp3 Fp= -F,

K Fi F‘f x
13,81871 -1.500491 -1.540000 0.4985
13,80732 -1.489491 -1.550000 0.4989
13,79078 -1.478037 -1.560000 0.4994
13,76877 -1.466099 -1.570000 0.5001
13,74096 -1.453646 -1.580000 0.5009
13.70697 ~1.440643 -1.590000 0.5020
13.66642 -1.427047 -1.600000 0.5032
13,64355 -1.420013 -1.605000 0.5040
13.61888 -1.412817 -1.610000 0.5047
13.57192 -1.400000 -1.618617 0.5062
13.40306 -1.360000 ~-1.643399 0.,5117
13,20556 -1.320000" -1.665695 0.5180
13,09854 -1.300000 _1.675304 0.5219
12.98614 -1,280000 -1,684904 0.5258
12,50000 -1,200282 -1.718210 0.5433
12,49823 -1,200000 -1.718287 0.5434
11.97114 -1,120000 ~1.744926 0.5645
11.49330 -1.050000 -1.765665 0.5849
11, 00000 -0.977948 ~1.783724 0.6084
10.47530 -0.900000 -1.800846 0.6364

9,.829703% -0,800000 -1.821464 0.6761
9.234006 -0.700000 -1.841319 0.7206
8,.706927 -0.600000 -1.862726 0.7703
8.274730 -0.500000 -1.887448 0.8259
7.976367 ~0.400000 ~-1.917682 0.8889
7.873906 ~0.300000 -1.954912 0.9616
8.048263 -0.200000 -1.998423 1.0467
8.512360 -0.100000 -2,039212 1.1426
8.929865 -0,020000 -2.061301 1.2145
9,009506 0 -2.065817 1.2291
9,079741 0.020000 -2.068127 1.242/¢
9.152730 0.050000 -2.072029 1.2592
9,200000 0.126497 -2.074709 1.2861
9.000000 0.231699 -2.076561 1.2938
8.500000 0.368000 -2.069787 1.2819
8.000000 0.478326 t2.053335 1.2662
7.398739 0.600000 -2.030726 1.2459
6.896330 0.700000 -2.005726 1.2291
6.404044 0.800000 -1.975115 1.2127
5.935352 0.900000 -1.938862 1.1970
5¢502325 1.000000 -1.896388 1.1823
5.115463 1.100000 -1.847226 1.1689
4.784783 1.200000 -1.790620 1.1572
4.335157 1.400000 ~1,650040 1.1407
4.243615 1.500000 -1.562275 1.1373
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Slase (o)

Initial Conditions: ri - O t - 0y r > 0
Pinal Conditions: - n/b; rf - o. zfib 0

) 4 s ’t x:
15.85000 1.538030 0.142749 0.5453
15.81000 1.533797 0.16084 0.5455
15,79000 1.531834 0.169227 0.5456
15.77051 1.530000 0.177017 0.5457
15.35576 1.500000 0.300644 0.5473
14.41663 1.450000 0.487065 0.5511
13.41040 1.400000 0:,647634 0.5554
12,50000 1.350854 0.784318 0.5597
11,69009 1.300000 0,907716 0.5640
11.00000 1.247388 1.020574 0.5686
10.49915 1.200000 1.112129 0.5729

9.776064 2.100000 1.281767 ¢.5631
9.456517 1.,000000 1.427175 0.5967
9,505903 0.900000 1.551850 0.6158
9,.8621861 0.800000 1.,652969 0.6413
10,34752 0.700000 1.721674 0.6692
10,58818 0. 600000 1.762157 0.6765
10,49841 0.500000 1.994275 0.6592
10,25000 0.400000 1.823555% 0.6370
9.932907 0.300000 1.848083 0.6180
9,568509 0.200000 1.868300 0.6028
9.165277 0.100000 1.885035 0.5911
8.732000 0 1.898509 0.582%
7.798774 -0,200000 1.917602 0.5727
7.313147 -0.300000 1.923475 0.5710
6.819865 -0, 400000 1.927939 0.5709
6324000 -0.500000 1.931505 0.5720
5.838000 -0,600000 1,932889 0.5746
5¢36 -0, 700000 1.934013 0.5779
4.896639 -0,800000 1.934778 0.5820
4.449041 ~0.900000 1.936347 0.5863
4,021914 -1,000000 1.938919 0.5906
3,616000 -1,100000 1.943636 0.5946
3,240000 -1.200000 1.949489 0.5984
2.890556 -1,300000 1.958641 . 0,6012
1,865209 -1,700000 2.02985%9 " 0,6029
1.722888 ~2,000000 2.126496 0.5957
6 .000000 -2.684600 2,401692 0.6202
6.536376 -2 ,800000 2.423280 0.6253
6.708485 ~2.900000 2.436111 0.6261
€.686781 ~3.000000 .44§025 0.6252
6.000000 ~3,280418 2.489526 0.6164
5. 000000 ~3.534626 2.489712 0,6147



Initial Conditions: F;, = 0j E, < 0; éi

Final Conditions:

Class (f

03 > o.
i

E; = 0y Ff> 0; F, = 03 Ef) 0.

Note: This clas is also represented by the conditions:
' ' ' L 0. B!
gEi = 0; Fi> 0; ii 0; E; > 0.
] 1 t L |
Fp = 03 Eft> 03 Ef = 0; Ff<f 0.
To obtain this representation take F; = F ; E; = -E,.
K E, F.
12.50000 -0,922300 +0.870369
11.25000 -0.981329 0.920610
11.,00000 -0.994345 0.931672
10.00000 -1.051386 0.979800
9, 000000 -1.118210 1.035030
8.000000 -1,196873 1.100000
6.750000 -1.319917 1.198307
4.844872 -1.6C0000 1.417370
4.406971 -1.700000 1.494434
4.087715 -1.800000 1.570804
3,822524 ~2.,000000 1.724154
5000000 -2.347730 1.986894
7.000000 -2.596185 2.124250
7.500000 -2.694021 2.153503
7.694946 -2.769554 2.170000
4.145615 -3,860885 2.250000
2.957395 -4.141600 2.252358
2.210961 -4.341600 2.253806
1.295156 -4.641600 2.271379
Class ggz
Initial Conditions: F; = 03 ﬁi = 0; ii:> 0.
Final Conditions: E. = O i'f = 03 Ef< 0.

Note:

To obtain this representation take Fi =

This class is
' . Rt _
(Ei =0; F| =
' !
Ff-O; Ef-

also represented by the conditions
ot

0; Ei> 0.

0; i‘;.) 0.

.

' -
¢ Ef = Ei'

* fThese values are due to P. Pedersen (unpublished).

K

15.77000
15,455

15.08612
15402927
14.97895
14.96060
14.956

E, F

i f
1.067147 +0.933589
1.100 0.944
1.150000 +0.944618
1.161819 +0.940000
1,177672 +0.,930000
1.189305 +0.920000
1.200 0.910

044462
0.4646
0.4684
0.4843
0.5008
0.5176
0.5381
0.5636
0.5673
0.5694
0.5711
0.5844
0.6123
0.6192
0.6209
0.6066
0.6135
0.6180
0.6193

X
0.7117
*

0.8057
0.8180
0.8326
0.8421
*

20.



15,02675
15.153
15.28072
15.38760
15.40455
1541905
15.43004
15.43234
15.43562
15.3073
15.42537
15.35624
15.26969
15.00000
14.54460
14,000
13.000
12.5000¢
12,000
11,000
10.196
9.915
10.0384
10.55390
10.62750
10,62932
10.62969
10,6056
10,2228
10,238
10,738
11,00000
11.9487
12,50000
13.,00000
13.2500C
13.50000
1375000
14,00000
14,06565
14.12277
14.17037
14.20704
14.23303%
14.25198
14.26518
14.24737
14.24022
14,231033
14,17500
14.16475
14,11490
14.09440
14.01000

B
1.250000
1.300
1.350000
1.400000
1.410000
1.420000
1.430000
1.432914
1.440000
1.450000
1.453000
1.463190
1.463367
1.456591

1.436592 -

1.4104
143578
1.32812%
1.2949
1.2109
1,100
1,000
0.900
0.810757
0.804448
0.804447
0.804456
0.810
0.900
l.wo
lolw
2.129777
1.200
1.225290
1,233426
1.233491
1.229108
1,.218899
14200304
1.1922i3
1.,185710
10177904
1.170115
1.162559
1.1%84299
1.140740
1.114031
10109755
1.092749
1.075786
1.071504
1.0498217
1.040952
1.027324

1.003455

—

Y,

+0, :43970
+01 680867
+0.582305

- +0.559673

+0.535307
+0.508454
+0.500000
+0.477743
+0.440012
+0.426212
+0,350000
+0.,300000

+0.203996

+0,.100000
0.009
-0,230
-0.317
-0,363
'00344
-0.,258
-0,062000
-2, 005000
«0.001000
-0.000002
0.046
0.202
0.330
0.483
+0.537869
0.707
+0.866735
+0.900887
+0.932627
+0.961383
+0.987776
+0.995000
+1.002000
+1.009000
+1.C160600
+1.023000
+1.031000
+1.045000
+1.075000
+1¢080000C
+1 100000
Al 2120000

2] .‘»1,25000

+1715C000

+1 e 160900
#£1.175600 .

+1,200000

21.



K

13,96863
13.90000
13,80000
13,708
13,60000
13,392
12,8324
12.50000
12,0187
11,00000
10,3818
9.70866
9.4
9.02773
9.32
9.65813
9,.,99803
10,15088
10.16324
10,08924
9.959187
9.958141
9.792165
9.575164
9.18392
8.928545
8.787
8,390
7.98
7.622153
7463546
6.935505
6.391237
6.192090
54979706
6.072945
6.575256
7.142005
7.6C0000
7.800000
8,000000
8,400000
9.000000
9.500000
9,800000
10.00000
10.20000
10.,40000
10.80000
11,00000
11,50000
11,80000
12.,00000
12.25000
12,50000

Ei
0.983186
0.946090
01877673
01800
04716260
0.600
0.400
0.310989
0,200
0.003349

-0.100
-0.200
-002592
-0.200
-0.100
0.000
0.100
0.146658
0.152940
0.134755
UelUUZ [ L
0.100000
0.056413
0
-0.100
~0.164434
-0.200
-0.300
-0.400
-0.50000
~0.543551
-0, 700000
~0.900000
-1.000000
~1.200000
-~1,400000
~1.600000
~-1.700000
~1.744131
-1.757026
-1.767032
-1.780311
-1.788456
-1.788293
-1.786173
~1.784111
-1.781566
-1.778874
=1.7723%10
-1.768701
-1.758884
-1.752580
-1.748238
-1.742629
-1a7370C42

Fe
+1.220000
+1.252383
+1.296307
1.319
+1.317022
1.285
1.186
+1.131696
1.053
+0.887609
0.779
0.644
0.570
0.273
0.190
0.125
0.057
o
-0.050000
-0.100000

N aYaYaYa)
-0.150000

-0.150372
-0.200000
-0.255922
-0.345

-0.400000
-0.429

-0.511

-0.589

-0.666524
-0.700000
-0.817336
-0.960491
-1.028066
-1.152400
-1.262175
-1.375607
-1.453193
-1.500910
-1.518362
~1.533985
-1.560347
-1.589560
-1.606238
-1.613439
-1.617194
-1.620155
-1.622381
-1.624650
-1.624735
-1.621895
-1.618016
-1.614457
-1,608811
-1.601685

1314

1.6134
1.6166
1.6218
1.6261
1.6294
1.6332
1.6377
1.6480
1.6541
1.6731
1.6876
1.6989
1.7154
1.7356

22,



X

12.75000
13,25000
13,50000
13.,50063
13.54684
13.59292
13.60000
13,64183
15.65289
13,66530
13,68146
13.70000
13,72000
13.72342
13.72577
13.72730
13.72876
13.,72888
fre il
13472443
13.72037
1370953
13.70735
13.7C51z
2 9ebIZ (U
13,68433
13.67517
13,66536
13.65480
13.64360
13.63163
13.56120
13.52785
13.49140
13.45177
13.36236
13,13871
13.00145
12.84481
12.66654
12.50000
12.23370
11.97202
11.67361
11.3315¢
10.93205
10.69688
10,65300
10.49309
10.84943
10.89800
10.93000
10,96000
10,99000

E.

i
-1.731457
-1.,719765
-1.714453
-1.714650
-1.713568
-1.,713051
-1.712944
-1.712487

-1.712239.

-1.712168
-1.712225
-1.712301
-1.712617
-1.712354
-1.713018
-1.713303
-1.713988
-1.714065
-1.714736
-1.715077
-1.715650
-1.713700
-1.716483
-1.716791
-1.717565
-1.720058
-1.717709
-1.721161
-1.719597
-1.722859
-1.719845
-1.723527
-1.725874
-1.727897
-1.731437
-1.731662
-1.736543
-1.746565
-1.757562
-1.766647
-1.772116
-1.786034
-1.802228
-1.809285
-1.837315
-1.862229
-1.893103
-1.915555
-1.916950
-1.932305
-1.893065
-1.888436
-1.885906
-1.883661
-1.881730

Fe
-1.,592836
~1.568305
-1.551347
~1,551300
-1.547800
~1.544300
~14543770
-1.5408C0
-1.540100
~1.5%9400
-1.538700
-1.538452
-1.540099
-1.541000
~-1.542000
-1.543000
~1,545000
-1.547000
-1.550000
-1.553000
~-1.556000
-1.562000
-1.563000
-1,564000
-1.566000
-1.569000
-1.572000
-1.575000
-1.578000
-1.581000
-1.5840C00
-1.587000
~1.6020C0
-1.608000
-1.614000
-1.620000
-1.632000
-1.656000
-1.668G000
-1.680000
-1.692000
-1.701971
-1.716000
-1.728000
-1.740000
-1.752000
-1.765C00
-1.77000C
-1.771000
-1.774000
~1.757C06
~-1.755483
-1.754506
-1.753614
-1.752751

X

1.7608
1.8367
1.5093
1.9095
1.9298
1.9546
1.9590
1.9895
1.9994
2.0120
2,0313
2,0605
2.1126
2.1279
2.1419
2.1544
2.1765
2.1961
2.2222
2.2458
2.2674
2.3071
2.3124
2.3182
2.3296
243455
2.3619
2.3820
2.3885
2.4109
2.4113
244339
244855
2.5072
2.5350
2.5465
245857
2.6692

3.1795
3,0524
32,2688
543476
3.7724
3.8141
3 L4 8454
3.8790
3.92C5

25.



Initial Conditionss
Final Conditions:

K

11,01000
11.02000
11.03000
11.03523
11.04000
11.04766
11.05464
11.05800
11.05880
11.05960
11.,06004
11.06058
11,06081
11.05708
11,04821
11.03368
11,00000
10.90000
10,80000
10.70000
10.57793
10.64305
10.79181
10,90000
11.,00000
11.40000
12.00000
12,50000
14,08304
14.47934
14.535753
14.50197
14.38918
14.11916
14.02093
13.67570
12.94616
12,50000
12,02800
11, 50000
11.00000
10.70000
10, 40000
10, 3000C
10.28540
10.30476
10.35053
10.40867
10.54233
10.80000

Clgss (k)
[] .
;=0 P, - o;ali:» .
Ef - */2’ ’f - 0.
Note: The degenerate case of a cusp, with E

Fi
-0.178326
-0.177874
-0.176305
-C.175000
~0.173452
~0.170000
”39165000
~-3,.161067
-C.159755
-0.158120
-C.15700C
-3.155000
-0,150008
~0,140000
~-(.130000
-,120000
~2.106920
-0.104286
-C.123978
~2.153306
-0.250000
-G, 300000
-0.350000
-G.375688
-0.395882
-0.457584
-0.514266
-0.531857
-0.400000
-0.300000
~0.250000
-0,200000
-0.150000
-0.080000C
-0.060000

0

0.100000
0.151334
0.200000
0.248068
0.285817
0.302165
0.304584
0.28958%
0.270000
0.250000
0.225000
0.2G0000
0.150000
0.060258

£

Ef
=14350059
‘10566491
~14382065
~1:390245
-1 .397921
~1.411146
-1.425549
-1.434723
-1.437497
-1.440787
-1.442979

'le446626‘

-1.455016
~1.469248
”A¢48116?
-1.491592
=2. 504330
-1.514648
~1,508639
-1.490708
-3-394416
~.>3310%2
~3.261354
~1,223068
~1.2191575
-1,0836€7
{1, 942706
-5.830932
-0.519540
-0.468345
~0.468594
-0,483197
-0.509465
0561559
-0.579189
-0.638425
-0.757791
-0.83055¢6
-0.909943
-1.005200
-1.108344
-1.183163
-1.287343
-1.354040
-1.397403
-1.427747
-1.455818
-1.477184
“;oSOé??G
-1.529486

= O and P

f

24.

€ U, is included.

b 4

1.7815
17?385
1.7015
1,683%4
1,6669
1.6395
31,6108
1.5929
1.5875
1.5811
1.5769
1.5535
1.5254
1.5C06
1.4770
1.4421
1.3748
1.3196
1.2647
t.1308
1.0750
1,0242
0.9995
. 9803
06,9215
0.8580
0.6185
0.7970
0.8485
0.8803%
0.9120
0.9419
0.9796
0.9894
1.0171
1.0588
100795
1.1001
1.1233
1.1481
1.1666
1.1955
1.2177
1.2351
1.2495
1.2657
1.2809
1.3110
1.3744



Fi Ff x
-~ v 20000 €, 028902 -1:527984 1.4099
+ 0495000 0.017594 -1,524041 1.4341
21.00000 0.013423 -1.516528 1.4672
11.04445 0.020000 -1.502849 1.5127
11.06615 0.030000 -1.488197 1.5523
11.07498 0.040000 ~1.472621 1.5886
11.07517 0.050000 ~-1.454774 1.6289
11.06716 0.060000 ~1.433368 1.6705
Class (1)
Initial Conditions:
el Same as claes (k)
Final Conditions:
Note: Same as class (k)

K Fi Ff x
15.00000 2.420000 2.432235 (.0623
14.43600 2.292000 2.306153% 0.0854
14.00000 2.198500 2.209775 0.1090
13.62360 2.108000 2.111160 C.1409
13.40000 2.055000 2-246758 0.1665
13.18580 2.010000 1.582502 0.1955
13.00000 1.979181 1.926679 0.2227
12.80000 1.956629 1.869102 0.2515
12,60800 1.944000 1.817073 0.2771
12,50000 1.939506 1.788699 0,2911
12,20000 1.935192 1.713904 0.3265
12,00000 1.936491 1.665592 C.3486
11.76700 1.940707 1.609391 0.3740
11,60000 1.945092 1.568347 0.3926
11.44620 1,950000 1.529342 0.4110C
11,19308 1,960000 1.460643 0.4433
11.00000 1.969582 1.4013584 0.4735
10.99311 1.970000 1.399026 0.4748
10.,85900 1.978400 1.350371 0.5020
i0,70000 1.993045 1.270456 0.5547
10,66017 2.000000 1.233761 0.5837
10,65713 2.010000 1.181805 0.6363
10,69481 2.015000 1.155900 0.6747
10,75000 2.018090 1.239731 0.,7119
10,83617 2.020000 1.128450 0.7645
11.00000 2.016864 1.149267 0.8957
11,02655 2.015000 1.165802 0.9409
11,04097 2.9013000 1.189138 0.9967
11.04222 2.012000 1.205102 1.0330

25.



Class (m)

Initial Conditions: E, = 03 F = 0 t1:> 0.
Final Conditions: B, = %/2; £, = 0 i'f> 0.
K F1 l"f x
-385.9430 0.010000 0.051217 0.1504
-68.99444 0.050000 0.123359 0.2462
~30.33587 0.100000 0.188305 0.3301
~11.87477 0.200000 0,301149 0.3301
-6.340919 0.300000 0.406675 0.3433
-4.009862 0. 400000 0.509140 0.3448
~3.376365 0.450000 0.559638 0.3429
-2.535816 0.600000 01708947 0.3293
-2.475000 0.700000 0.806923 0.3155
-2.,471274 0.650000 0.758080 0.3228
-2,633037 0.800000 0.903772 0.2990
~2.931662 0.900000 0.999577 0.2805
~3,324117 1.000000 1.094444 0.2605
-3.781301 1,100000 1,188521 0.2398
~4.284452 1,200000 1.281980 0.2187
~5.385719 1.400000 1.467879 0.1775
~6.576374 1.600000 1,653771 0.139
~-7.838336 1.800000 1.840946 0.1069
-9.169998 2.000000 2.030153 0.0798
Class ‘n}
Initial Conditions: F, = Oy ti - 03 ?i:> 0.
Final Conditions: F, = O Ef = 0j if<: 0.
Note: To obtain the remainder of the class take the mirror images, i.e. the
[ 1
values Ei - -Ef; Ef = -Ei.
K Ei l':!f x
4870000 -1.594560 1.595414 1.1268
4.873414 -1.540000 1.649716 1.1266
4.886110 -1.50000C 1.686880 1.1262
44944520 -1.40000C 1.774663 1.1244
4.,988954 ~1.350000 1.815711 1.1233
5.043931 -1.300000 1.854939 1.1220
5.109578 -1.250000 1.892482 1.1207
5.184459 -1,200000 1.929580 1,1200
54600000 -1.000000 2.057225 1.1158
6.510801 -0.700000 2.209606 1.1193
6.872376 -0,600000 2.252829 1.1239
7.646494 -04400000 2.%33213 162292
0.449144 =0, 200000 2.3%98000 1.1649
10.37 0.64627 2.69532 1.2931
6.036574 1.000000 3.9840834 1.1159



27.

Class gaz
Initial Conditions: E, = 0; i'i - 03 i:i> 0.
&
E, = 0; .= 05 E. > 0.

Note: To obtain the remainder of the class take the mirror images,

Final Conditions:

i.e. the values

£
K Fi Ff x

10.41790 0.363000 1.774431 4.0088
10.45000 0.360288 1.773643 3.9572
10.50000 0.356883 1773962 3.9182
10.74655 0.340000 1.769071 3.8058
11.00000 0.320953 1.762218 3.7233
11.01214 0.320000 14762063 3.7196
11.25806 0.300000 1.754475 346509
11.49058 0.280000 1.746746 3.5907
11.71296 0.260000 1.738651 345356
11.92706 0.240000 1.730072 3,4835
12,13401 0.220000 1.720825 3,4334
12.33456 0.200000 1.711073 3,3841
12.50000 0.183040 1.702062 343423
12.71843 0.160000 1.688806 3,2847
12.90255 0.140000 1.675898 3,2326
13,08205 0.120000 1.661562 3.1767
13.25767 0.100000 1.644305 3.1147
13.34444 0.090000 1.634060 3.0799
13.43100 0.080000 1.623298 3,03%98
13.51803 0.070000 1.609943 2.992%
13,61000 0.059724 1.592900 2.9263
13.66490 0.054000 1.579334 2.8702
13,71001 0.050000 1.564487 2.7979
13.74582 0.050000 1.540588 2.6370
13.74000 0.053543 1.533913 2.5627
13.,72000 0.059071 1.531315 2.5C2¢
13.70000 0.063587 1.531491 2.4709
13.65000 0.073%612 1.534261 2.4228
13.60000 0.082780 1.538146 2.3920
13.50000 0.099944 1.545679 2.351C
13.00000 0.175591 1.574852 2.2570
12.50000 0.243316 1.592654 2.2138
12.00000 0.307075 1.602831 2.,1872
11.00000 0.429593 1.605159 2.1556
10.00000 0.553%587 1.582818 2.136¢
9.500000 0.619567 1.559595 2.1297
9.000000 0.691425 1.524161 2.1231
R .750000 0.730731 1.500746 2.1199
8.500000 0.773761 1.471369 2.1168
8. 000000 0.876841 1.390572 2.1109
7500000 1.072182 1.205712 2.1062
7.450000 1.140000 1.1404444 2.1070
7.370000 1.140000 1.152976 2.1121
7 « 350000 1.140000 1.156149 2.1133



28.

Class ‘é}
Initial Conditions: F; = 0; E = 05 F > 0.
Pinal Conditions: E = 03 F, = 0; Eg > 0.
Note: This class is also represented by the conditions
E; =03 F; =05 E >0
Fp = 05 Eg =0y i';.< 0.
" To obtain this representation take
] t
Fi = Ff; Ef = -Ei
K Ei Ff x
11.00000 0.296314 1.753452 4.2909
10,99843 04296000 1.753703 4.2207
10.99454 0.295000 1.753816 4.0978
10,99134 0.294000 1.753643 4.0165
10.,98855 0293000 1.753767 3.9496
10,98615 0.292000 1.754083 3.8894
10,98418 0.291000 1.754138 3.8314
10.98276 0.290000 1.754080 3.7715
10,98238 0.289000 1.754105 3.7009
10,98500 0.288304 1.754146 3.6085
11,00000 0.289930 1.753872 3.4587
11.00041 04290000 1.753428 3.4563
11,01519 0.293000 1.753391 3.3766
11.01952 0.294000 1.753135 323573
11.02765 0.296000 1.752992 343238
11.05588 0.304000 1.752073 3.2249
11.07956 0.312000 1.751032 3.1511
11.09961 0.320000 1.752280 3.0873
11.11615 0.328000 1.749572 3.0311
11.12700 0.334737 1.749202 2.9844
11.13306 0.340000 1.748841 2.9476
11.13630 0.348000 1.748476 2.8871
11.13000 0.353563 1.748602 2.8342
11.11000 0.356919 1.749002 2.7756
11.,08351 0.356500 1.749249 27313
11.06585 0.355000 1.749670 2.7089
11,04161 0.352000 1.750291 2.6832
11,00000 0.345162 1.751438 2.,6472
10.96849 0.339000 1.752424 26244
10.90983 04326000 1.754746 2.5881
10.85652 0.313000 1.755470 2.5609
10,80620 0.300000 1.756991 265379
10.73217 0.280000 1.759193 2.5082
10.48665 0.210000 1.766784 2.4314
10.24729 0.140000 1.774544 2,3749
10,00932 0.070000 1.7682501 2.3283



K

9.774416
9.675929

9.548671.

9.428878
9.323869
9.281781
9.254982
9.270000
9290000
9.340000
9.440000
9640000
9,840000

10.02943
10.56000
10.92429
11,00000
11, 04000
11.47957
11,88240
12,24890
12.50000
12,57639
12.86304
13.10698
13.21189
13.38780
13.45820
13,51687
13,.56333
13.58190
13.61000
13.61910
13,62502
13,62763
13.62680
13.,62238
13.61434
13,60206
13.56433
13.53800
13,50500
13.46470
13.41529
13.35379
13.27528
13.17072
13.01799
12.,90000
12,80000
12.60000
12.50000
12,20000
11.80000
11,60000

E,
1
0.000002
-0.030000
-0.070000
-0.110000
-0.150000
-0.170000
-0.190000
-0.207453
-0.210817
-0.212568
-0.208197
-0.189526
-0.165474
-0.140000
-0.060000
0
0.012034
0.020000
0.10C0Co
0.1£0000
0.260000
0.320434
0.340000
0.420000
0. 500000
0.540000
0.620000
0..660000
0.7000C)
0.740000
0.760C20
0- 800000
0.82C000
0.840000
0. 860000
0.8£0200
0.900000
0.520000
0.940000
0.9€2000
1.000002
1,020000
1.040C00
1.050000
1.030000
1.100200
1.120C50
1.140000
1.150327
1.162673
1.165%59
1.163870
1.151549
1.1242167

F,

1
1.791323
1.794698
1.800360
1.805064
1.812061
1.815022
1.818156
1.821542
1.820845
1.820671
1.819397
1.815530
1.810431
1.805746
1.798043
1.780024
1.777580
1.776537
1.761059
1.747610
1.728032
1.7214170
1.709719
1.690604
1.668635
1.661300
1.642144
1.63312)
1.623098
1.615229
1.612215
1.605204
1.503748
1.602303
1.201339
1.601025
1.€01416
1.601888
1.504200
1.€09806
1.612581
1.617975

.1.622569

1.620%522
1.636688
1.645197
1.655222
1.663439
1.677341
1.684432
1.697989
1.702867
1.719483
1.73559

1.74329

x
2.2863
2.2691
2.2451
2,2198
2.1880
2.1684
2.1421
2.1016
2.0869
2.0611
2.0242
1.9692
1.9250
1.8882
1.8025
1.7515
l.7418
1.7367
1.6852
1.6420
1.6088
1.5873
1,5809
1.5581
1.5407
1.5307
1.5144
1.5059
1.4980
1 .ARR3
1.4825
1.4725
1.4661
1.4603%
1.4549
1.4501
1.4439
1.4419
1.4445
1.4497
1.4559
1.4651
1.4777
1.4940
1.5148
1.5423
1.5807
1,6091
1.6759
1.7587
1.8390
1.8790

29«



K

11.40000
11.30000
11.20000
11.00000
10,80000
10.70018
10.65000
10.60000
10.50000
10.43580
10.43562
10.38694
10.36263
10.36970
10.41139
10.50676
10.60514
10.75450
10.81456
10.83000
10,84942
10.87000
10.89800
10.90000
10.93000
10.96000
10.99000
11.00000
11.02000
11,03243
11.04216
11.05033
11.05725
11.06314
11.06575
11.07236
11.07736
11,08257
11,08410
11.08193
11.06314
11.05300
11,02500
11.00000

E,

by

1.128500
1.121059
1.112896
1.093879
1.070102
1.055600
1.047400
1.038270
1.016265
0.997071
0.997000
0.975000
0.950000
0.926000
0.900000
0.870000
0.850000
0.825000
0.824008
0.823000
0.822133
0.821500
0.821500
0.821504
0.822397
0.824393
0.825361
0.827909
0.830000
0.832000
0.834000
0.836000
0.838000
0.839000
0.842000
0.845000
0.850000
0.855000
0.860000
0.870000
0.872566
0.876159
0.875772

F,

1
1.748700
1.753599
1.756690
1.762680
1.768068
%.770559
1.770046
1.772908
1.774855
1.775997
1.776002
1.776447
1.776051
1.774716
1.772659
1.768379
1.764910
1.759856
1.757207
1.755278
1.756707
1.752688
1.755133
1.757126
1,754201
1.753314
1.752569
1.752191
1.751727
1.751292
1.751064
1.750917
1.750610
1.750551
1.750455
1.750232
1.750350
1.749694
1.750051
1.750648
1.751375
1.752803
1.752910
1.753818

b ¢

1.9208
1.9412
1.9629
2.,0088
2.0598
2.0886
2.1052
2.1212
2.1607
2.1936
2.1937
2.2722
2.3129
23594
2.4212
2.4730
2.5516
2.5872
2.5976
2.6092
2.6250
2.6438
2.6443
2.6697
2.6971

" 2.7291

2.7413
2.7686
2.788%
2.8061
2.8230C
2.8396
2.8557
2.8637
2.8878
2.9118
2.9537
2.9982
3.0478
3,1831
3.2367
3.3877
3.5791

30.



Inivigl Comds+ione:

Y o Y LT S A
Plesd Tondldione:

TN o T
Hoca R

4

16, 990C0
10.85000
10.83200
10.80000
10.78772
10.70404
10.58929
10.43938
10.35416
10.32287
10.34358
10.41720
10, 54691
10,75682
10,86153
10,93053
11.00000
11.00516
11.04475
11,08597
11.10721
11.12890
11.15102
11.17365
11.19675
11.24449
11.29442
11.32026
11.34674
11.36021
11.37386
11.38768
11.41586
11.45000
11.50000
11.75000
12.00000
12.25000
12.50000
12,75000
13.00000
13.23527
13.25000
13.35851
13.44913
13.60106
13.69351
13.74940
13.777711
1%,77€00

7, Ed ):.
ULABE Z H
A L R A

same ag claas [}

0.E17971
0.819273
£.820131
0.822103
0.823000
¢.831000
0.847000
0.879000
0.911006
C.943000
0.975000
1.007000
1.039000
1.071000
1.087000
1.095000
1.102467
1.103006
1.107000
1.111000
1,113000
1.115000
1,117000
1.119000
1,121000
1.125000
1.129000
1.131000
1.133000
1.134000
1.135000
1.136000
1.138000
1.140354
1.143670
0.119148
0.170468
1.175636
1.178148
1.174909
1.163301
1.140000
1.137959
1.120000
1.100000
1.050000
1.000000
0950000
0. 900000
0.860006

C. 056018
<+ ORR33E
2.06833%
C.073621
&.,075635
G,089144
3.107082
G.129144
. 140549
C,143254
0..37866
0,3i24167
N, 101503%
0.:68107
0,046619
7.034432
©o522067
0. 21146
C. 314054
7. 06639
0.002798
«-0.001127
"‘O & 905164
-0.009274
-0,013496
=0.0222€2
-0.0%1492
-0.036297
-3.041236
-G.043759
-0.046318
-0,048917
-0.054227
-0.,070231
-1.158031
-1.168722
-0,224769
-0.282896
-0.346100
-0.416443
~0.492650
-0.497871
-G.538639
-0.576578
-0.653522
~0.717404
-0.774683%
-0.828037
-0.859803

2.5718
2.5531
2.5549
2.5336
2.5236
2.51%3
2,508
2.5028
2.4975
2.4920
2.4865
2.4753
2.4637
2.4578
2.4518
2.4487
2.445¢t
2.4425
2.4362
2.4286
2.417€
2.363%
2.3115
2.2595
2.2068
2.1521
2.,0941
2.0347
2.0307
2,0010
1.9749
1.9286
1.89688
1.8803
1.8708
1.8725%5

31,



Initis’

Ping’
Fote:

Conditiosne:

4

15.42753
15.42472
15.39431
15.38426
15.33127
i5.23746
15.11434
14.96243
14.77992
14.55681
14026612
13.98826
13, 50000
13,00000
12.50000
12.25000
12.00000
11.75000
11.50000
11.25000
11.00000
10.75000
10. 50000
10.37803
10.34761
10.31673
10.23915
10.23082
10.29758
10.43171
10. 53000
10.83000
10.73000
10.75000
10.75878
10.74980
10.70000
10.60000
10.50000
10.40000
10. 30000
10.20000
10.10000
10.05000
10.00000
9.950000
9.917145
9,915198

Zonditicna:

same as ciass (a)

Yei

i
~0. 450000
~{1, 500000
~3.51000QC
-C, 550000
~-0.600C00
~0.,650000
~0. 700000
~Ge 750000
~0.6C000C
-0.,850000
-0.878648
-0,882014
-0 .840666
-0.777582
-0.741723
-0.703796
-0.663960
~-0.622102
-0.5778¢C4
~2.530173
-0.477313
~0.375000
-0.36329%
-0.350000
~C. 300000
~0.250000
=0,200000
=0.150000
-0.120716
-0,091068
-0.052594
-0.038431
-0.,024200
0]
0.034528
0.079294
0.116703
0.151271
0.184561
0.217621
0.251672
0.269742
0.289358
0.312682

0.338570

0.343950

4

Class (6)

.
£

b4

0431164
C.411502
0.363021
0.353558
0.316085
-270549
0.226.7C
5.182592
$.3239089
0.094146
G, 042882
¢
-C.DE6432
-0.2.266717
-0.181433
-0,207122
-3.231782
~0.255441
-0.278051
-0.299544
~0.319742
-0.338323
-0.354717
-0.361671
~0.36329%
-0.,364907
-0.369171
-0.371252
-0.370589
-2.365520
~0.360430
-0.354481
-0.347941
~-G.346567

-0.345972 -

-0.346634
~0.350059
-0.356577
-0.362488
-0.367676
-0.371880
-0.374714
-0.375306
-0.3741176
-0.371286
-0.364455
-0.349332
-0.343877

2.£786
2.7782
2.8719
7.9171
2,2620
35,0072
3,057%4
3.1018
3.1541
3.2131
2,2860
3.3329
%3471
3.3634
3.4254
3.4891
3.5571
3.6335
3.7334
3.7897
3.8034
3,8116
3,8138
2.8002
3.7715
2.7457
3.7228
3.7021
%.6833
3.6660
3.6579
3.6500
3.6425
3.6376
32,6381
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Initial Conditions:

Final Conditions:

Note:

K

8.100000
8.500000
8.678465
8.900000
9.071346
9.193476
9.258044
9.228497
9.,126486
9,060156
8.993231
8.936470
8.920393
8.911194
8.880000
8.900000
8.918614
8.930000
8.,950259
8.,982443
9,000000
9.200000
9.400000
9,600000
9.800000
10.,20000
10.40000
10.56250
10.70000
10.80000
11.00000
11,20000
11.40000
11.58879
11,67662
11.68967
11.57100
11.46985
11,40000
11.30000
11.29000
11.28500

Class fk}

same as class (k)

" "

2.249498
2.236850
2.230000
2.220000
24210000
2.200000
2.190000
2.175000
2.165000
2.160000
2.155000
2.150000
2.148000
2.146000
2.145000
2.143993

2.143000.

2.142000
2.141000
2.140000
2.138922
2.137409
2.136243
2.135506
2.134132
2:129964
2.126529
2.122914
2.119155
2.115905
2.107948
2.097267
2.082315
2.060000
2.040000
2.020000
2.000000
1,995000
1.993425
1.992877

1.992919 .

1.992937

"

f

-1.822197
-1.810056
-1.802585
-1.789342
-1.774346
-1,756117
~1.733862

-1 _KAT70927

oV gL

-1.643750
-1.615732
~-1.582152
-1.540651
-1.520819
-1.498221
-1.494412
-1.475326
-1.456629
-1.439750
~1.420101
-1.396882
~1.376527
-1.301869
-1.240093
-1.194433
-1.149678
-1.077203
-1.043404
-1.017429
-0.996408
-0.980988
-0.952129
-0.924341
-0.898337
-0.876191
-0.868060
-0.870892
-0.894286
-0.911587
-0.923328
~0.939657
-0.940412
-0.942038

X

1.1933
1.2068
1.2146
1.2268
1.2389
1.2502
1.2592
1.2652
1.2622
1.2587
1.2545
1.2481
1.2464
142430
1.24395
1e2444
1.2440
1.2439
1.2442
1.2428
1.2504
1.2579
1.2691
1.2812
1.3098

1l.3272

1.3433
1.3587
1.3706
1.3987
1.4335
1.4808
1.5527
1.6239
1.7115
1.8526
1,9266
1.9736
2.,0396
2,0462
2.0497
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Initial Conditions:
FPinal Conditions:
Note:

K

11,00000
10.96670
10.94752
10.94207
10.95000
11.,00000
11.10000
11.20000
11.26799
11.35156
11,37887
11.,37226
11.33441
11,28554
11.22624
11.17276
11,0620%
11.00000
10.98000
10.96000
10,95155
10,96000
11,00000

Initial Conditions:

FPinal Conditions:

K

11.00000
10.75806
10.61518
10.49074
10.45183
10.45000
10.50000
10.59500
10.60000
10.70000
10.80000
10.90000

Class {éf}

same as class (a)

Fy F.
0.072157 -2.012387
0.080000 ~2.012861
0.090000 -2.011901
0.097000 -2.010610
0.104343% -2,008244
0.106976 -2.004080
0.095038 ~-2.,000261
0.072707 -1,998959
0.050000 -11999451
0 -24002502

-0.050000 -2.005166
~-0.100000 -2,005713
-0.150000 -2.003950
-0.180000 -2.002158
-0.200000 -2.001050
-0.210000 -2.000880
-0.215000 -2.002684
-0.208417 -2.005272
-0.203751 -2.006554
-0.195771 -2.008424
~0.180000 -2.011315
-0.172754 -2.012284
-0.166372 -2.012276
Class (¥)
E; =0; F, =05 E; >0
Ef = -n/2; ff = 0.

Fy Fy
1.752480 -0.,982134
1.760000 -1.022996
1.765000 -1.049%386
1.770000 -1.075521
1.772000 -1,0849242
1,774192 -1.090898
1.773844 -1.084276
1.,772193 -1.069324
1.772092 -1.068514
1.769894 -1.052050
1.767457 -1.035581
1.764844 -1.019031

x

3.2029
2.8931
2.7397
2.6460
2.5314
2.3792
242332
2.1256
2,0562
1.9589
1.9070
1.8912
1.9137
1,9550
2.0098
2.0633
2.1991
2.3131
2.3679
244532
2.6320
2.7424
3,1527

X

3.1371
5.0433
249534
209103
2.8192
2.7731
2.7226
2.7204
2.6817
2.6492
2.6201
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X

11.00000
11,20000
11,40000
11.60000
11.80000
12,00000
12.40000
12.50000
12.60000
12,.80000
13,00000
13,.20000
13.40000
13,57045
13.65645
13,68727
13,70920
13,71604
13.71863
13.71761
13,71500
13,71000
13.70000
13.60000
13,40000
13.20000
13.00000
12.80000
12.,600C0
12,50000
12.40000
12.20000
12.00000
11,80000
11.40000
11.00000
10.60000
10,20000
9,800000
9.600000
9,400000
9,200000
9.130168
9.081897
9,.081479
9.,122139
9,200000
9.300000
9,400000
9,600000
10.00000
10.40000
10,80000
11,20000
11.60000
12.00000

F,
1

1.762084
1.756160
1.749712
1.742710
1.735091
1.726767
1.707465
1.701947
1.696085
1.683133
1.668078
1.650008
1,627072
1.600000
1.580000
1.570000
1.560000
1.555000
1.550000
1.548000
1.546337
1.544887
1.,5.13742
1.548590
1,564793
1.579213
1.591743
1.602777
1.612627
1.617182
1.621523
1.629641
1,637116
1.644059
1.656704
1.668206
1.679115
1,690028
1.701749
1.708336
1.715865
1.725406
1.730000
1,735000
1.740000
1.742500
1.744162
1.744806
1.744753
1.743611
1.739266
1.733379
1.726334
1,718187
1,708926
1.698768

Ff
-1.002808
-0.970468
-0.938799
-0,907601
-0.876836
-0.846368
-0.785985
-0.770908
-0.755790
-C.725442
-0.694761
-0.663420
-0.630860
-0.600929
-0.583595
-0.576119
-0.569200
-0.565825
-0.5623.46
-0.560850
-0.559489
-0.55812G
-0.556625
-0.554514
-0.559820
~0.566901
-0.573990
-C.580631
-0.586659
-0.589415
-0.591987
-0.596568
-0.600359
~-0.603%328
-0.606629
-0.605944
~-0.600476
-0.588675
-0.567314
-0.550703
-0.526995
-0.487529
-0.463103
-0.429781
-C.38313%6
-0.347436
-0.307684
-0.269995
-0.238443
-0.184157
-0.091486
-0.006948

0.0762.0
0.162890
0.259121
0.378954

X

2.5935
245446
244996
2.4569
244155
243746
2.2919
242485
2.202%
2.1517
2.0932
2.0195
1.9259
1.8430
1.7924
1.7312
1.6942
1.6495
1.6277
1,6063%
1.5825
1.5527
1.4400
1.3573
1,3124
1.2814
1.2599
1.2413%
1.233y
1,2272
1,2159
1,2068
1,1995
1.189¢2
1.1834
1.1815
1.1827
1.1867
1.1896
1.1930
1.1966
1,1975
1,1972
1.1945
1.1908
1.1853
1.1790
1.1732
1.1625
1.1435
1.1276
1.1150
1.1065
1,1041
1,1138
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K

12,20000
12,30000
12,35000
12.35000
12,30000
12420000
i2,10000
12,00000
11,80000
11,60000
11,40000
11.20000
11,00000
10,80000
10.79000
10.78500
10,78500
10.80000
10,90000
11.00000

By

1.693883

1.692130
1.692261
1.696160
1.700787
1.707652
1.713502
1.718794
1.728260
1.736633
1.744152
1.750925
1.756943
1.761610
1.761676
1.761644
1.761034
1.760178
1.756287
1.753122

Ff
N0.463593
14527666
04585255
0,677680
0s736167
0.802294
01850924
0.,892170
0,963810
1.028624
1.091488
1.156344
1.229411
1.341782
1.354741
1.364331
1.394146

1.412335

1.,446734
1.439686

X

1.12060
1:1477
1,1673%
1.20585%
1.2334
1.2676
1.2949
1.3190
1.3631
1.4056
1.4493
1.4969
1.5544
1.6566
1.670¢
1.6814
1.7194

3\
1 Fana™
X RN

1.8477
1.9729
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‘ ii has the same sign as ii for a given orbit.
{ = that intercept of the line E =

J = that interoept

Orbit

I

II
III
Iv
\J
vl
ViI
VIII
IX
X
XI
X1I
XIII
XIv

The values of ”71 are, respectively:

II, 1.710949;
VII, 1.719839;

I, 10713681’
VI' 10745392'

Simple asymptotic - periodic {limiting) half - orbits

symmetric with respect to the E- or F-axis.

By

1,307735
1.306357
1.319335
1.321045
1,324681
1.323609
1,310836
1.301025
1.328004
1,311214
1.322852
1,310439
1.321178
1,322044

x = 11.0

.
B,
1

-0.046274
-0.053104
0.012090
0.020829
0.039521
0.033997
-0.030828
-0,079346
0,056745
-0.028938
0.030100
-0.032815
0.021508
0.025964

B

b 4
f

E,

-x

-
-0.87056
-0.29566

0

0

0
-1 .883

R

0

0
-3.10431

-R

0

III, 1.736810;
VIII, 1.700403;
XI, 1.7438703 XII, 1.719051; XIII, 1.7405065 XIV, 1.742247.

= -x/2.

E. at which F

i

-

Fe

C.17150
0

0
2,0115
1.0030
1.7538

0
2.4646
2.3122
0.4065

0

-1.9901
-0,81235

IV, 1.740240;
IX, 1.754245;

b

-

37.

= 0 is gatisfied.

of the line F = F, at which éf = 0 is satisfied.

Simple
classes
involved

il

2Y
&
il

¥
A

Vy 1.7475493
X, 1.720592;



Figure la:

Figure 1b:

Figure 2a:

Figure 3a:

Figure 3b:
Figure 4a:
Figure &4b:
Figure 5a:

Figure 5b:

Figure 5c:

Figure ba:

rigure 6b:

Figure 6c:

Fipuce 6d:

CAPTIONS

General Profile of Eigensurfaces, K vs Ei’

A cross (+) with a Roman numeral, at K = 11.0, represents
a limiting orbit, shown in detail in Figure 10,

Detailed Profile, K vs Ei’ showing the (B), (Y), and (g)
classes.

The crosses (+) at K = 11.0 represent limiting orbits.

General Profile of Eigensurfaces, K vs Fi'
The crosses (+) at K = 11.0 represent limiting orbits.
(Mr. C. Wagner first noticed the difference between

classes A\ and f).

Detailed Profile, K vs Fi’ showing the (a), (g), ((v), (B),

and (a) classes.

Detailed Profile, K vs F (u),
and (a) classes.

The crosses (+) at K = 11.0 represent limiting orbits.
Ejection Orbits, ﬁi =0, K=8,0 to 11.5.

Where the values of the Jacobi integral are not explicitly
given,
This remark holds for the subsequent figures, also.

Orbits, £ =0, K = 10.8 to 15.2.

Orbits, Fi =0, K=8.0 to 11.0.

Orbits, fi =0, K=11.0 to 15.0.

Ejection
Ejection

Ejection

Ejection Orbits as a Function of Initial Angle measured
from the + F-axis, 0® to 60°, for K = 10.0.

Ejection Orbits as a Function of Initial Angle measured
from the + F-axis, 60° to 120°, for K = 10.0.

Ejection Orbits as a Function of Initial Angle measured
from the + F-axis, 120° to 180°, for K = 10.0.
Trajectories Normal to the F-axis, K = 12.5, F1 = -1.25 to

-0.50.
for Fi = .]1.2 follows rather closely that for F1 = -1.15.

Over the latter part of its course, the trajectory

i - -0.70 to

{ = -]1.80 to

Trajectories Normal to the F-axis, K = 12.5, F

Trajectories Normal to the E-axis, K = 12.5, E

the increment from one curve to the next is constant.

1.75.
0.

Trajectories Normal to the E;axis, K = 12.5, Ei = 0 to +1.60.



Captions - continued

Figure 7:
Figure 8a:

Figure 8b:
Figure 8¢c:

Figure 9:

Figure 10:

Simple Periodic Orbits for K = 12.5.
Development of the (g) Class, near mass m,.
The curves are numbered in order along the profile (E or F)
starting with 1 near the mass m, and increasing until the
limiting orbit in Figure 8c is reached,.

Development of the (g) Class, Intermediate Part.
Development of the (g) Class, Terminationm.

The curves from 22 onwards are started on the F-axis,
instead of on the E-axis, for clarity of representation

and for comparison with Figure 7.

Development of the (b) Class (a closed group), from maximum
K to minimum K. (For the reverse development, take the
mirror images about the E-axis).

The curves are numbered consecutively from 1 to 8, and

have K-values of 15,428, 13.988, 12.0, 11.0, 10.23, 10.75,
10.30, and 9.915 respectively.

Periodic Limiting Orbits (K = 11,0), Symmetric with respect
to the E- or F-axis and Asymptotic to Lb and LS' (For
complete half-orbits, take the proper mirror images to
couple Lk and LS)'

Curves VI, IX-XIV were calculated by C. Wagner.
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